<- read.csv("EQ_Data.csv")
eq # focusing on q1.raw to q40.raw
<- eq[,c(paste("Q",1:40,".processed",sep=""))]
eq_processed ::paged_table(eq_processed) rmarkdown
colnames(eq_processed) <- paste("eq",1:40, sep="")
Questionnaires and surveys often have items that reflect multiple sub-scales or multiple (possibly related) factors (AKA components or sub-scales), in a single measure. In Confirmatory Factor Analysis you already have allocated items to specific factors (e.g. based on literature), but need to confirm whether these are valid allocations.
For example, the empathy quotient [@Lawrence2004] has multiple types of empathy within it:
cognitive empathy
emotional reactivity
social skills
Let’s use one publicly available data set to check if we can confirm that the allocations of items to each of these subscales is consistent with the current data:
https://github.com/bhismalab/EyeTracking_PlosOne_2017/blob/master/EQ_Data.csv
We already have three subscales for the empathy quotient, so let’s confirm whether our current data is consistent with them. The subscales are:
Cognitive:
14: I am good at predicting how someone will feel.
15: I am quick to spot when someone in a group is feeling awkward or uncomfortable.
29: I can sense if I am intruding, even if the other person doesn’t tell me.
34: I can tune into how someone else feels rapidly and intuitively.
35: I can easily work out what another person might want to talk about.
Social Skills:
2: I find it difficult to explain to others things that I understand easily, when they don’t understand it first time.
4: I find it hard to know what to do in a social situation.
7: Friendships and relationships are just too difficult, so I tend not to bother with them.
8: I often find it difficult to judge if something is rude or polite.
21: I don’t tend to find social situations confusing.
Emotion:
3: I really enjoy caring for other people.
16: If I say something that someone else is offended by, I think that that’s their problem, not mine.
19: Seeing people cry doesn’t really upset me.
33: I usually stay emotionally detached when watching a film.
39: I tend to get emotionally involved with a friend’s problems.
Let’s start by looking at correlation matrices to see if the items tend to correlate with each other in the current data set:
eq14 eq15 eq29 eq34 eq35
eq14 1.0000000 0.34501695 0.2905797 0.4416185 0.27504384
eq15 0.3450170 1.00000000 0.3721252 0.2532783 0.07192026
eq29 0.2905797 0.37212520 1.0000000 0.2468024 0.28854264
eq34 0.4416185 0.25327834 0.2468024 1.0000000 0.23509011
eq35 0.2750438 0.07192026 0.2885426 0.2350901 1.00000000
So far looking good, as everything positively correlates - mostly with r-values greater than .25.
eq3 eq16 eq19 eq33 eq39
eq3 1.0000000 0.19886409 0.23743638 0.2444680 0.3494996
eq16 0.1988641 1.00000000 0.09384386 0.2801024 0.2080836
eq19 0.2374364 0.09384386 1.00000000 0.1884394 0.3160680
eq33 0.2444680 0.28010241 0.18843936 1.0000000 0.2923009
eq39 0.3494996 0.20808361 0.31606800 0.2923009 1.0000000
Emotional empathy seems similarly consistent to cognitive empathy.
Let’s now see how well each item loads onto the total of these scores:
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.3 ✔ readr 2.1.4
✔ forcats 1.0.0 ✔ stringr 1.5.0
✔ ggplot2 3.4.4 ✔ tibble 3.2.1
✔ lubridate 1.9.3 ✔ tidyr 1.3.0
✔ purrr 1.0.2
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
Attaching package: 'kableExtra'
The following object is masked from 'package:dplyr':
group_rows
eq_subscales_r <- data.frame(
cor(
eq_processed[,c(
# Cog
"eq14","eq15","eq29","eq34","eq35",
# Social Skills
"eq2","eq4","eq7","eq8","eq21",
# Emotion
"eq3","eq16","eq19","eq33","eq39"
)],
matrix(data = c(
rowSums(eq_processed[,c("eq14","eq15","eq29","eq34","eq35")]),
rowSums(eq_processed[,c("eq2","eq4", "eq7", "eq8", "eq21")]),
rowSums(eq_processed[,c("eq3","eq16","eq19","eq33","eq39")])
), ncol = 3
)
)
)
trying to create a proper table…
Loading required namespace: GPArotation
Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : I
am sorry, to do these rotations requires the GPArotation package to be
installed
Factor Analysis using method = minres
Call: psych::fa(r = eq_processed, nfactors = 3, rotate = "oblimin")
Standardized loadings (pattern matrix) based upon correlation matrix
MR1 MR2 MR3 h2 u2 com
eq1 0.53 -0.11 0.03 0.297 0.70 1.1
eq2 0.13 0.24 0.24 0.130 0.87 2.5
eq3 0.49 0.11 -0.20 0.287 0.71 1.4
eq4 0.08 -0.03 0.56 0.325 0.68 1.0
eq5 0.22 0.59 0.01 0.397 0.60 1.3
eq6 0.25 0.05 -0.13 0.085 0.92 1.6
eq7 0.15 0.26 0.24 0.145 0.85 2.6
eq8 0.31 0.13 0.16 0.141 0.86 1.9
eq9 0.28 0.38 0.24 0.282 0.72 2.6
eq10 0.26 0.05 -0.27 0.142 0.86 2.1
eq11 0.21 -0.42 0.11 0.237 0.76 1.6
eq12 0.38 0.23 0.45 0.398 0.60 2.5
eq13 0.57 -0.05 -0.06 0.330 0.67 1.0
eq14 0.61 -0.23 -0.05 0.430 0.57 1.3
eq15 0.43 -0.22 0.13 0.246 0.75 1.7
eq16 0.42 0.42 -0.03 0.347 0.65 2.0
eq17 0.20 0.29 -0.22 0.170 0.83 2.7
eq18 0.46 0.22 0.36 0.394 0.61 2.4
eq19 0.36 -0.12 0.04 0.150 0.85 1.3
eq20 0.26 0.55 0.15 0.390 0.61 1.6
eq21 0.12 -0.08 0.48 0.249 0.75 1.2
eq22 0.62 0.03 -0.27 0.454 0.55 1.4
eq23 0.10 0.11 -0.18 0.055 0.95 2.3
eq24 0.20 -0.18 -0.27 0.146 0.85 2.6
eq25 0.19 0.28 -0.42 0.286 0.71 2.2
eq26 0.42 -0.42 0.12 0.370 0.63 2.2
eq27 0.24 -0.06 -0.01 0.060 0.94 1.1
eq28 0.53 0.18 -0.31 0.413 0.59 1.9
eq29 0.54 -0.19 -0.08 0.337 0.66 1.3
eq30 0.16 0.40 -0.04 0.184 0.82 1.3
eq31 0.35 0.60 0.01 0.483 0.52 1.6
eq32 0.29 0.19 0.20 0.162 0.84 2.6
eq33 0.33 0.30 0.08 0.209 0.79 2.1
eq34 0.59 -0.22 -0.12 0.414 0.59 1.4
eq35 0.41 -0.25 0.23 0.283 0.72 2.3
eq36 0.52 -0.49 0.09 0.516 0.48 2.1
eq37 -0.06 -0.04 0.08 0.013 0.99 2.3
eq38 0.30 -0.54 0.08 0.386 0.61 1.6
eq39 0.47 0.00 -0.31 0.319 0.68 1.7
eq40 0.58 -0.28 0.00 0.419 0.58 1.4
MR1 MR2 MR3
SS loadings 5.70 3.36 2.02
Proportion Var 0.14 0.08 0.05
Cumulative Var 0.14 0.23 0.28
Proportion Explained 0.51 0.30 0.18
Cumulative Proportion 0.51 0.82 1.00
Mean item complexity = 1.8
Test of the hypothesis that 3 factors are sufficient.
df null model = 780 with the objective function = 22.46 with Chi Square = 1209.17
df of the model are 663 and the objective function was 14.34
The root mean square of the residuals (RMSR) is 0.09
The df corrected root mean square of the residuals is 0.1
The harmonic n.obs is 69 with the empirical chi square 833.94 with prob < 6.5e-06
The total n.obs was 69 with Likelihood Chi Square = 743.36 with prob < 0.016
Tucker Lewis Index of factoring reliability = 0.754
RMSEA index = 0.039 and the 90 % confidence intervals are 0.02 0.058
BIC = -2063.86
Fit based upon off diagonal values = 0.79
Measures of factor score adequacy
MR1 MR2 MR3
Correlation of (regression) scores with factors 0.95 0.92 0.87
Multiple R square of scores with factors 0.90 0.85 0.75
Minimum correlation of possible factor scores 0.80 0.70 0.50
# from https://www.anthonyschmidt.co/post/2020-09-27-efa-tables-in-r/
flex <- function(data, title=NULL) {
# this grabs the data and converts it to a flextbale
flextable(data) %>%
# this makes the table fill the page width
set_table_properties(layout = "autofit", width = 1) %>%
# font size
fontsize(size=10, part="all") %>%
#this adds a ttitlecreates an automatic table number
set_caption(title,
autonum = officer::run_autonum(seq_id = "tab",
pre_label = "Table ",
post_label = "\n",
bkm = "anytable")) %>%
# font type
font(fontname="Times New Roman", part="all")
}
fa_table <- function(x, cut) {
#get sorted loadings
loadings <- psych::fa.sort(x)$loadings %>% round(3)
#supress loadings
loadings[loadings < cut] <- ""
#get additional info
add_info <- cbind(x$communalities,
x$uniquenesses,
x$complexity) %>%
# make it a data frame
as.data.frame() %>%
# column names
rename("Communality" = V1,
"Uniqueness" = V2,
"Complexity" = V3) %>%
#get the item names from the vector
rownames_to_column("item")
#build table
loadings %>%
unclass() %>%
as.data.frame() %>%
rownames_to_column("item") %>%
left_join(add_info) %>%
mutate(across(where(is.numeric), round, 3))
}
fa_table(
psych::fa(eq_processed, nfactors = 3, rotate="oblimin"),
.5
)
Loading required namespace: GPArotation
Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : I
am sorry, to do these rotations requires the GPArotation package to be
installed
Joining with `by = join_by(item)`
Warning: There was 1 warning in `mutate()`.
ℹ In argument: `across(where(is.numeric), round, 3)`.
Caused by warning:
! The `...` argument of `across()` is deprecated as of dplyr 1.1.0.
Supply arguments directly to `.fns` through an anonymous function instead.
# Previously
across(a:b, mean, na.rm = TRUE)
# Now
across(a:b, \(x) mean(x, na.rm = TRUE))
item MR1 MR2 MR3 Communality Uniqueness Complexity
1 eq22 0.617 0.454 0.546 1.373
2 eq14 0.613 0.430 0.570 1.287
3 eq34 0.591 0.414 0.586 1.371
4 eq40 0.584 0.419 0.581 1.434
5 eq13 0.569 0.330 0.670 1.036
6 eq29 0.544 0.337 0.663 1.280
7 eq28 0.535 0.413 0.587 1.857
8 eq1 0.532 0.297 0.703 1.099
9 eq36 0.515 0.516 0.484 2.063
10 eq3 0.287 0.713 1.437
11 eq39 0.319 0.681 1.748
12 eq18 0.394 0.606 2.360
13 eq15 0.246 0.754 1.679
14 eq26 0.370 0.630 2.167
15 eq16 0.347 0.653 2.009
16 eq35 0.283 0.717 2.294
17 eq19 0.150 0.850 1.261
18 eq33 0.209 0.791 2.105
19 eq8 0.141 0.859 1.885
20 eq32 0.162 0.838 2.589
21 eq6 0.085 0.915 1.623
22 eq27 0.060 0.940 1.117
23 eq31 0.602 0.483 0.517 1.598
24 eq5 0.589 0.397 0.603 1.285
25 eq20 0.548 0.390 0.610 1.602
26 eq38 0.386 0.614 1.612
27 eq11 0.237 0.763 1.637
28 eq30 0.184 0.816 1.338
29 eq9 0.282 0.718 2.558
30 eq17 0.170 0.830 2.708
31 eq7 0.145 0.855 2.578
32 eq4 0.564 0.325 0.675 1.041
33 eq21 0.249 0.751 1.176
34 eq12 0.398 0.602 2.493
35 eq25 0.286 0.714 2.195
36 eq24 0.146 0.854 2.639
37 eq10 0.142 0.858 2.085
38 eq2 0.130 0.870 2.510
39 eq23 0.055 0.945 2.305
40 eq37 0.013 0.987 2.339
cog_eq_sum = (
eq_processed$eq14 +
eq_processed$eq15 +
eq_processed$eq29 +
eq_processed$eq34 +
eq_processed$eq35
)
cog_eq_mean = (
eq_processed$eq14 +
eq_processed$eq15 +
eq_processed$eq29 +
eq_processed$eq34 +
eq_processed$eq35
)/5
lm(eq14 ~ cog_eq_sum, eq_processed)
Call:
lm(formula = eq14 ~ cog_eq_sum, data = eq_processed)
Coefficients:
(Intercept) cog_eq_sum
-0.3124 0.2341
Call:
lm(formula = eq14 ~ cog_eq_mean, data = eq_processed)
Coefficients:
(Intercept) cog_eq_mean
-0.3124 1.1705
(Intercept) eq14 eq15 eq29 eq34 eq35
-1.1501e-15 2.0000e-01 2.0000e-01 2.0000e-01 2.0000e-01 2.0000e-01
colnames(eq_subscales_r) <- c( "Cognitive", "Social", "Emotion")
eq_subscales_r %>% mutate_all(~cell_spec(
.x,
color = ifelse(.x < .4, "black", "white"),
background = ifelse(.x > .4, "red"," white"))) %>%
kable(escape = F) %>%
kable_styling()
Cognitive | Social | Emotion | |
---|---|---|---|
eq14 | 0.730729714723979 | 0.110723735489975 | 0.31320589104921 |
eq15 | 0.60185382395657 | 0.198874708000659 | 0.137720182774352 |
eq29 | 0.659975490377257 | 0.0278299656284012 | 0.364451955577018 |
eq34 | 0.679619374819311 | 0.0226190168052008 | 0.395730784538071 |
eq35 | 0.587492289787915 | 0.122610871425514 | 0.242014658835711 |
eq2 | -0.00813200484463844 | 0.576298173261772 | 0.133855862092061 |
eq4 | 0.0479274896411267 | 0.662778025977272 | 0.123591773099612 |
eq7 | -0.0312109379222552 | 0.438752142983534 | 0.234889555117118 |
eq8 | 0.226816177181639 | 0.427950397740909 | 0.134334810841783 |
eq21 | 0.161873895295539 | 0.627680352407105 | -0.0206828796782751 |
eq3 | 0.29722368237889 | -0.00177049925158063 | 0.62739169422544 |
eq16 | 0.268239998089082 | 0.168294312535106 | 0.592732439474545 |
eq19 | 0.35758009314024 | 0.183400506448371 | 0.552243103025108 |
eq33 | 0.159850007854409 | 0.302368129555882 | 0.665487951247779 |
eq39 | 0.349069094803534 | 0.0110077011019322 | 0.690638221783324 |
This is quite dense, but in broad terms, we want to cluster items that correlate with each other into one component (AKA factor AKA subscale).
If we use a package in R we can start identifying the top 3 components and check if the questions map on to what we would expect for each of the three subscales:
eq16 eq20 eq22 eq18 eq13
0.2752500 0.2436235 0.2428536 0.2329153 0.2315572
eq37 eq11 eq21 eq4 eq38
0.03183132 -0.02479062 -0.03616440 -0.04118648 -0.04219994
Component 1 involves questions 20, 33, 31, 16 and 5. These items are: - 20: I am very blunt, which some people take to be rudeness, even though this is unintentional. - 33: I usually stay emotionally detached when watching a film. - 31: Other people often say that I am insensitive, though I don’t always see why. - 16: If I say something that someone else is offended by, I think that that’s their problem, not mine. - 5: People often tell me that I went too far in driving my point home in a discussion.
So how do we start doing this? We can make a regression to determine the loading of all the items onto the total:
eq_total <- rowSums(eq_processed)
first_component <- lm(eq_total ~ ., eq_processed)
first_component$coefficients
(Intercept) eq1 eq2 eq3 eq4 eq5
1.542403e-14 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
eq6 eq7 eq8 eq9 eq10 eq11
1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
eq12 eq13 eq14 eq15 eq16 eq17
1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
eq18 eq19 eq20 eq21 eq22 eq23
1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
eq24 eq25 eq26 eq27 eq28 eq29
1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
eq30 eq31 eq32 eq33 eq34 eq35
1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
eq36 eq37 eq38 eq39 eq40
1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
eigen() decomposition
$values
[1] 2.93449333 1.87628459 1.31590409 1.12748372 0.94180395 0.88649785
[7] 0.79441522 0.71321627 0.65949310 0.62037952 0.57051522 0.51529423
[13] 0.47943423 0.44518243 0.42671811 0.40955342 0.38885355 0.36458886
[19] 0.34093142 0.32034798 0.28981434 0.26346324 0.25212709 0.21377123
[25] 0.19943788 0.16612460 0.15125182 0.13004091 0.12441560 0.11618794
[31] 0.11047414 0.10347115 0.08948276 0.08151707 0.06526776 0.05568862
[37] 0.05048182 0.04280785 0.03199620 0.01706141
$vectors
[,1] [,2] [,3] [,4] [,5]
[1,] -0.14885205 0.10112567 -0.02509082 -0.071014782 0.070127637
[2,] -0.10091649 -0.12487961 -0.21344804 0.126134563 -0.363701783
[3,] -0.21319619 0.06215300 0.14461470 0.111668352 0.254921340
[4,] -0.04118648 -0.01513016 -0.42425919 0.110096470 0.018531412
[5,] -0.17453482 -0.27933600 0.05769899 -0.012773827 -0.094372919
[6,] -0.12317922 0.04277050 0.13093569 -0.152834097 -0.075972782
[7,] -0.09429054 -0.12047107 -0.11068727 0.095173646 0.321122230
[8,] -0.15532360 -0.04014554 -0.11777900 -0.162564085 -0.112894310
[9,] -0.15175665 -0.13375762 -0.09957822 0.015337922 0.099157025
[10,] -0.11476213 0.07181521 0.20893937 0.185060033 0.179800156
[11,] -0.02479062 0.20731727 -0.11512269 -0.129484221 -0.124767585
[12,] -0.20001559 -0.08797362 -0.28406761 -0.149859215 0.179441277
[13,] -0.23155718 0.14482426 0.02484372 -0.102876589 0.133912627
[14,] -0.18108913 0.18299383 -0.01014458 -0.166832869 -0.090845908
[15,] -0.10440156 0.11709966 -0.07772977 -0.105781123 0.105817944
[16,] -0.27525004 -0.17463360 0.05807836 -0.074587632 -0.109099073
[17,] -0.12515385 -0.11189375 0.22004369 -0.070312126 0.144586699
[18,] -0.23291526 -0.05944152 -0.24972629 -0.118728554 -0.070205907
[19,] -0.13481111 0.15230707 -0.07563699 0.265291859 -0.141997509
[20,] -0.24362346 -0.36238558 -0.07453948 -0.156177866 0.025176784
[21,] -0.03616440 0.03942237 -0.34412315 0.148213368 -0.048368899
[22,] -0.24285356 0.12463983 0.13604868 -0.051930456 -0.246722473
[23,] -0.05203000 -0.01501208 0.16511453 -0.002450736 0.270528451
[24,] -0.05906693 0.19421309 0.15273056 0.358550925 -0.177778979
[25,] -0.09644040 -0.08117186 0.26316869 -0.140791173 -0.035738385
[26,] -0.07345369 0.18152254 -0.07792673 -0.124229730 0.065045677
[27,] -0.10514313 0.11214456 -0.02311665 0.353333232 -0.154066342
[28,] -0.21837854 0.02627596 0.18307314 -0.127036457 -0.207679119
[29,] -0.14871777 0.15334195 0.01875033 0.017018645 -0.094104526
[30,] -0.13421971 -0.19925686 0.06446130 0.102339786 -0.341431242
[31,] -0.22781047 -0.24536195 0.04637429 0.050756852 0.010756140
[32,] -0.16086212 -0.03560941 -0.12984607 0.332415006 0.208100395
[33,] -0.22804044 -0.11299201 -0.01468625 0.293444598 0.219353354
[34,] -0.17436789 0.18970876 0.03337218 -0.049325165 -0.007173955
[35,] -0.11389235 0.14957934 -0.15942072 -0.172264522 0.002624950
[36,] -0.10887641 0.25415327 -0.08877280 -0.068476179 0.041093920
[37,] 0.03183132 0.01079756 -0.09170238 0.184201107 -0.090322073
[38,] -0.04219994 0.29754522 -0.10121144 -0.115424152 0.104174103
[39,] -0.21909596 0.14852516 0.22629102 0.171059890 0.019044720
[40,] -0.16930983 0.22832068 -0.04107838 0.005916164 0.051211687
[,6] [,7] [,8] [,9] [,10]
[1,] 0.006119948 0.02324630 0.040691595 -0.1294096393 -0.148942216
[2,] 0.016933565 -0.17665873 0.223096197 -0.0405096824 0.352530196
[3,] -0.042796961 0.09290645 0.026050627 0.0395456079 0.054063729
[4,] -0.074503190 0.16521157 -0.202173247 -0.2966167135 0.124578200
[5,] 0.012713419 -0.06357712 -0.086066025 -0.0491824725 -0.051250400
[6,] 0.435228223 0.06098821 -0.161284969 0.2577071219 0.117801427
[7,] -0.271066653 -0.01194754 -0.057270194 0.0979508265 -0.044225282
[8,] 0.134081558 0.12799009 -0.071293952 -0.2198553070 -0.451131985
[9,] 0.207132844 -0.14029164 0.093306497 0.0656231074 0.184870075
[10,] 0.142926959 -0.18753662 -0.116615738 0.0570337168 0.013059541
[11,] -0.032643620 -0.04351784 -0.222009296 0.1315299255 -0.013179787
[12,] 0.199806055 0.13708449 0.060524975 0.1992480218 -0.132030286
[13,] -0.153104814 0.04908259 0.342429803 0.1077049680 0.149118464
[14,] 0.003958447 -0.03875740 -0.098081800 -0.0317053321 0.008479807
[15,] -0.127331352 -0.02569759 -0.006488851 0.1161201330 -0.099095263
[16,] 0.198074734 0.32323386 -0.157413533 -0.0004700701 0.258594312
[17,] -0.068202126 -0.31281778 0.085339084 -0.0076273430 -0.058200957
[18,] 0.137998888 -0.16938085 0.201376101 0.1345761916 0.016416638
[19,] -0.117115123 0.05501882 -0.138403111 0.1168033759 0.184423548
[20,] -0.309746658 0.32653654 0.092161901 -0.1094815145 -0.073249089
[21,] -0.030030064 -0.36464316 -0.109756057 0.2834541486 -0.077322145
[22,] -0.073825472 -0.14454128 -0.071059067 -0.0699442597 -0.189200852
[23,] 0.418352031 0.06055086 0.002244558 0.0325248469 0.041387139
[24,] 0.050443616 0.12239003 0.191329884 0.0599348238 -0.209461246
[25,] -0.144190583 0.06700051 0.081587883 -0.0543381124 0.206056218
[26,] 0.070323095 0.01312386 0.048277226 -0.0780515538 0.003983627
[27,] 0.084677432 0.28827864 0.182056470 0.1048929065 -0.270329635
[28,] 0.022764004 -0.15490076 -0.040686689 -0.1208785449 -0.154640753
[29,] -0.028725942 0.03954373 -0.009367995 0.1293606197 -0.006759526
[30,] -0.112625495 0.04595560 -0.210180789 0.2547197346 0.043968622
[31,] -0.060563016 -0.31190190 0.213870711 -0.0204652801 -0.004114626
[32,] 0.061696200 0.12617541 0.076618157 0.1160058088 0.013861306
[33,] 0.048341035 -0.20001719 -0.427379992 -0.2543358862 -0.115205194
[34,] -0.047060618 -0.11709317 0.050869067 -0.1546589529 0.062455555
[35,] 0.101873334 0.04138749 -0.131456373 -0.0606821789 0.037080094
[36,] -0.093811702 -0.09952521 -0.049077877 -0.1227509486 -0.019950696
[37,] 0.309862048 -0.06975852 0.245299005 -0.5309007228 0.118851107
[38,] -0.072224835 0.01754501 -0.065361115 -0.0487848696 0.308351032
[39,] -0.168248949 0.12052077 -0.146240053 -0.1386520615 0.229948767
[40,] -0.055521030 0.03278789 0.280474287 -0.0010935095 -0.095309650
[,11] [,12] [,13] [,14] [,15]
[1,] -0.253868134 -0.026378923 0.139382716 0.044761895 0.08948919
[2,] -0.022810667 0.020994584 -0.077046746 0.346488286 -0.08691651
[3,] 0.120914913 -0.072314901 0.187086205 0.301066309 0.32564864
[4,] -0.088050052 -0.243189034 -0.267756742 0.072911971 0.03630678
[5,] -0.072822847 -0.288424864 -0.078123589 -0.273594921 0.01349082
[6,] -0.203816671 -0.275828938 -0.203716874 0.094047851 -0.11443579
[7,] 0.005326963 0.006993484 0.014542079 -0.149687164 -0.15293618
[8,] 0.045712400 0.076175741 -0.265109868 0.202428397 -0.02931851
[9,] 0.138159936 -0.024521607 -0.160244586 -0.348243157 0.23199313
[10,] 0.264929142 0.043684988 0.050768359 0.145715076 -0.18998061
[11,] 0.110870762 0.403955313 -0.073179826 0.010223102 -0.14049182
[12,] 0.070954746 0.093634203 -0.128963760 0.049677031 0.30365893
[13,] -0.114143158 -0.269418949 -0.071534229 -0.078927689 -0.15602113
[14,] -0.173753963 -0.040394180 0.164228968 0.052666105 -0.04110498
[15,] -0.144614985 0.053256450 -0.053968648 0.066967560 -0.28890074
[16,] -0.116896928 0.230041437 0.075767587 -0.041653811 -0.25641550
[17,] -0.429776496 0.243035922 -0.261530553 0.093768297 0.17357371
[18,] 0.316419980 0.178596105 0.051927948 0.007019879 -0.21310623
[19,] 0.136542837 0.018220133 0.087625887 0.084760908 0.21910180
[20,] 0.058038535 0.002380763 0.297734072 0.115009764 -0.12710823
[21,] -0.185384319 -0.138466933 0.134471641 0.071194368 -0.07846002
[22,] 0.168649625 -0.179815303 0.017623692 0.114531283 0.11851323
[23,] 0.011044629 -0.023558273 0.317489916 0.100585874 -0.01445311
[24,] -0.097156222 0.155450721 -0.175588489 -0.079492243 -0.08651245
[25,] -0.066388538 0.306500289 -0.188557761 -0.005850511 0.05072269
[26,] -0.216927702 -0.043321064 0.077391489 -0.210244505 -0.00799991
[27,] -0.149843296 0.131568176 0.016582460 -0.022052581 0.11290888
[28,] 0.072210654 -0.274295719 0.023933918 0.071539745 -0.01341991
[29,] 0.070641695 0.027451376 0.070896954 -0.336881264 -0.19055657
[30,] -0.219397023 0.021368869 0.280512041 -0.193161328 0.25095271
[31,] 0.027619178 0.121965742 -0.060345272 -0.044247910 0.10288207
[32,] -0.110944046 -0.033972122 -0.114297377 0.183704630 -0.03051556
[33,] -0.069234258 0.128769313 0.022270597 -0.116804666 -0.16698083
[34,] 0.017632909 0.061659269 0.160647608 0.162520062 0.04542429
[35,] 0.176403011 0.121207893 -0.055449911 -0.202345939 0.33783961
[36,] -0.065575303 0.141128952 0.145660585 -0.095775914 0.10261327
[37,] -0.091821121 0.066421466 0.215964244 -0.150725673 -0.04461417
[38,] -0.227886499 0.068254196 0.004405031 0.075515277 0.06253901
[39,] 0.210024433 -0.096319225 -0.318256877 -0.058321039 -0.04186827
[40,] 0.098775253 -0.135888673 -0.007911576 -0.228873442 -0.07877680
[,16] [,17] [,18] [,19] [,20]
[1,] -0.094923537 -0.192238711 -0.09534877 -0.159657019 -0.263154099
[2,] -0.121152744 -0.268133556 -0.02037691 -0.073369010 -0.361937208
[3,] 0.136792271 -0.170694040 -0.21878266 -0.140875936 -0.102684603
[4,] 0.149548107 0.007767771 -0.20848356 -0.067509154 0.185568114
[5,] 0.481794881 -0.188839707 0.11141921 0.038518180 -0.038908091
[6,] -0.036236361 0.342278526 -0.18683115 -0.093753777 -0.030993709
[7,] -0.028349776 -0.033031614 -0.06621637 0.343806212 -0.194590135
[8,] -0.033311715 0.133706153 0.08596254 -0.020568295 -0.217074430
[9,] 0.055467903 0.043113458 -0.01553761 0.204987535 -0.198908488
[10,] 0.343420406 0.069697224 -0.28911609 -0.273611058 0.069972436
[11,] 0.214466094 0.108083332 -0.13501143 0.101843466 -0.033521223
[12,] -0.056667299 -0.215770902 -0.19729269 0.124579893 0.175846777
[13,] -0.208146922 0.061091112 -0.08383813 -0.164370003 0.230492665
[14,] -0.027594081 -0.007459796 -0.02565145 0.335406003 0.283029151
[15,] 0.079017018 -0.125565686 -0.06598592 -0.042522877 -0.040319330
[16,] -0.003111449 -0.284897471 0.08718054 0.005253693 0.204073473
[17,] 0.013151740 0.083604440 0.23870805 -0.133560752 0.093053343
[18,] -0.010005348 0.192489223 0.20382396 -0.036038300 -0.031016716
[19,] -0.007722025 0.089276259 0.25784135 0.005659660 0.280583546
[20,] 0.027470624 0.239427325 -0.05417795 -0.058508189 -0.056329942
[21,] -0.157064450 -0.136480572 -0.06166973 -0.012169958 0.045251810
[22,] 0.009507169 -0.186098407 -0.10823197 0.227906483 0.032039812
[23,] -0.164121480 -0.078152996 0.13108411 0.243008214 -0.176144583
[24,] 0.086174771 -0.241328036 -0.05969505 0.140081716 -0.027124119
[25,] 0.011038704 -0.172615827 -0.11747661 0.068862712 0.111035856
[26,] 0.128928264 -0.053620643 0.05692409 -0.245700805 -0.216982410
[27,] -0.102461867 0.233335740 -0.15346714 0.017944021 -0.003563527
[28,] 0.013283549 0.023721311 0.14159740 0.176211916 0.042775237
[29,] 0.062276826 -0.144201758 -0.08689177 -0.202104892 -0.100007284
[30,] -0.010394611 0.202151342 -0.02704892 -0.090903607 -0.145816766
[31,] -0.026404981 0.214858055 -0.31276877 0.044056190 0.114886719
[32,] 0.320797860 0.083951261 0.43460631 0.046631181 -0.005060487
[33,] -0.353547954 -0.025710715 0.02007452 -0.076692996 0.079746128
[34,] 0.085732769 0.034358582 0.21586470 -0.122799869 0.069852372
[35,] -0.147264008 -0.100313953 0.12993224 -0.301260599 0.037329184
[36,] 0.185613773 0.122754928 -0.02132291 0.016540313 -0.159091609
[37,] 0.079922147 0.126452053 -0.16708879 0.071711947 0.129862952
[38,] 0.104901845 0.187108097 -0.06353429 0.331486099 -0.184810504
[39,] -0.271893227 0.130433763 0.03299805 0.035128750 -0.284171868
[40,] -0.065532585 0.003331394 0.14907648 0.019462781 0.111738238
[,21] [,22] [,23] [,24] [,25]
[1,] 0.057672069 -0.010551627 0.014968636 0.1097851744 -0.127171088
[2,] 0.052742405 -0.075167540 0.097918946 0.1288066938 -0.003167578
[3,] -0.091351983 0.071981822 0.098595627 0.1932563305 0.074172130
[4,] -0.089750265 0.012887413 -0.069575343 0.0201398071 -0.074999800
[5,] -0.105054835 0.099999891 0.215121871 0.0320525083 0.276750869
[6,] -0.018051076 -0.107230686 0.215391029 0.0278297235 -0.261925807
[7,] -0.110984652 -0.004501101 -0.172779210 0.0437490646 -0.474516306
[8,] 0.317941149 0.270735936 -0.265285451 -0.0677401142 -0.035585094
[9,] 0.009873304 0.268701811 -0.057027592 0.1086886812 -0.128163197
[10,] 0.076670473 0.006345776 -0.350082840 0.1281912774 -0.007574883
[11,] -0.065025747 -0.194878502 0.136143733 0.1878198469 -0.053093452
[12,] -0.112253421 -0.256008332 0.062484961 -0.2442605282 0.139343090
[13,] 0.128292244 0.316523701 -0.125319360 0.0784518976 0.091945693
[14,] 0.060555856 0.004547840 0.076081147 0.1079321765 -0.007279708
[15,] 0.225037036 -0.002187989 0.160618807 -0.3477567168 0.200652679
[16,] -0.176525618 0.107213379 -0.255439051 -0.0272481522 -0.115792942
[17,] -0.257692097 -0.186722861 -0.201635226 0.1297006215 0.086662286
[18,] -0.209706251 0.201864780 0.047428530 0.1039642797 0.172330896
[19,] 0.274574355 0.094625818 0.139058644 0.0006627626 -0.099762103
[20,] -0.010208942 -0.239235823 0.091686272 0.1777883597 -0.001568161
[21,] -0.069699526 -0.091453598 -0.290076956 -0.0343322188 0.019308268
[22,] -0.073354275 0.111719789 -0.149595935 -0.1353328673 -0.004963187
[23,] 0.142208245 -0.052849616 -0.015582670 -0.0992049892 0.089362240
[24,] 0.077014285 -0.040263842 0.165036300 0.1958822410 -0.189610287
[25,] 0.231526169 0.098279972 -0.061075475 -0.0125485845 -0.019225859
[26,] -0.004669175 0.030269719 0.151333121 -0.0211666407 -0.203903433
[27,] -0.349408797 0.187095515 0.008207817 0.0295395527 0.173370681
[28,] -0.016886784 -0.246723640 -0.036673036 0.1842840233 -0.010075954
[29,] 0.029013724 -0.167060014 -0.029893424 -0.1945045934 0.167493234
[30,] 0.166349960 -0.010025768 -0.209196032 -0.1056451108 0.009238251
[31,] 0.245671242 -0.080741853 0.230342462 -0.2352927921 -0.138194625
[32,] 0.234658334 -0.172874740 -0.057908496 -0.1222790914 -0.006920263
[33,] 0.056578419 0.135243648 0.327772042 0.1664786261 0.149730837
[34,] -0.341029989 0.155614708 0.176302491 -0.3893493814 -0.362084771
[35,] 0.138372105 -0.191425450 -0.073764745 0.1813234310 -0.060065814
[36,] 0.017882284 0.088301359 -0.056626891 -0.1075930915 0.020749553
[37,] 0.038662979 -0.214313995 -0.172380866 -0.1201924920 0.039706488
[38,] 0.048990490 0.067009239 -0.034395153 0.1525092351 0.325790082
[39,] -0.193488224 -0.243956538 -0.083020835 -0.2744093864 0.146703443
[40,] 0.074083456 -0.267947912 -0.056702045 0.2101688044 -0.049783535
[,26] [,27] [,28] [,29] [,30]
[1,] 0.1261976960 0.4845188015 -0.057770949 -0.140507882 -0.025772829
[2,] 0.0206144478 -0.0230884426 0.046307863 0.072373564 0.116750147
[3,] -0.1823751123 -0.3561312586 0.054947467 0.045154503 -0.087922747
[4,] 0.0628123080 0.2343519072 0.265168309 -0.030656805 0.115630452
[5,] 0.1310736588 -0.0070743408 -0.236793636 0.081898799 0.211634066
[6,] -0.0385937111 -0.0711048529 -0.076164795 -0.214972619 -0.145522262
[7,] 0.1315442218 -0.0630451939 -0.215327781 -0.048833432 0.096518845
[8,] 0.1082669211 -0.2519390034 -0.070704782 0.135653858 0.045384229
[9,] 0.0007944122 0.0104994599 0.354746023 0.149582306 -0.404848848
[10,] 0.1693863971 0.2743603613 -0.081317473 0.102996515 0.010999736
[11,] -0.0540792995 -0.1594418821 0.174381159 0.030223976 0.344251588
[12,] -0.0202520296 0.1014750013 -0.181411806 -0.024019058 0.049655459
[13,] -0.1328828723 -0.1352276350 -0.107243577 0.020129689 0.224284343
[14,] 0.1904037295 0.0278573378 0.148270272 0.091071121 -0.130051812
[15,] -0.0500101508 0.1702298879 0.036838424 0.230090443 -0.341186432
[16,] -0.1878720247 -0.0648672691 -0.097741463 0.219430770 0.001730235
[17,] 0.2170308246 -0.0699135511 0.021538774 0.008099121 -0.086690936
[18,] 0.0231632243 0.2378415260 -0.133672035 -0.262831366 -0.045238335
[19,] 0.4182285733 0.0008798547 -0.145151997 0.134670728 -0.074284223
[20,] 0.1228706469 -0.0773181768 0.036874934 -0.028801053 -0.263699822
[21,] 0.0121871913 -0.1863299304 0.034246740 0.091247102 -0.080131451
[22,] 0.0344283810 -0.1150367069 0.007291642 -0.484909202 0.002420392
[23,] 0.1977979813 0.0840537503 0.172241134 0.078706373 0.311691231
[24,] -0.0948390259 0.0524647864 -0.279020221 0.009544148 -0.206553405
[25,] 0.0594849896 0.1131241478 0.287880918 -0.279527786 0.060239844
[26,] 0.2191918037 -0.1605031941 0.056036613 0.055933637 0.198444513
[27,] 0.1295629163 0.0536864258 0.209225746 0.149040005 0.122131930
[28,] -0.1925996747 0.1089079117 0.143821576 0.307285752 -0.007699667
[29,] 0.2814053783 -0.2656112376 0.242592735 -0.161992159 -0.120451289
[30,] -0.1902429386 0.1809669527 -0.043648890 -0.098491666 0.114197959
[31,] -0.0155084650 -0.0417931104 -0.065406659 0.193334011 0.228112371
[32,] -0.2192327733 -0.0642663334 0.158876673 -0.273290637 0.034993759
[33,] -0.1525868353 -0.0520388087 0.046093380 -0.168706570 0.011836742
[34,] -0.0269458077 0.0352368012 0.008205491 0.010828145 -0.000423724
[35,] -0.0329725008 -0.0413906875 -0.186302842 0.027645914 -0.039720160
[36,] -0.4193815101 0.0725158797 0.032464427 0.093732182 -0.024994670
[37,] 0.0150865842 -0.1766856815 -0.162448843 -0.112129715 -0.128435264
[38,] 0.0649681396 -0.0300664309 -0.297040601 -0.058548849 -0.019733263
[39,] 0.0403027971 0.0616921497 -0.089968170 0.124814120 -0.005028767
[40,] -0.1082104252 0.1119012875 0.129789422 -0.024299983 0.172421644
[,31] [,32] [,33] [,34] [,35]
[1,] -0.005285036 -0.095671366 0.362669996 -0.075026530 0.256949901
[2,] 0.047241314 0.129880583 -0.171559066 0.062743492 -0.011831095
[3,] -0.179963877 0.182123169 0.229944920 0.052705836 -0.243545580
[4,] 0.065330152 0.006442492 0.024953194 0.104563270 -0.225150004
[5,] -0.099246907 0.165657889 -0.017576778 -0.094494620 0.125111701
[6,] 0.059648892 0.241617969 0.028130687 -0.106557684 0.044271074
[7,] 0.043603714 0.164488559 0.036121656 -0.145801394 -0.268208583
[8,] -0.145619084 0.104948317 0.116804770 0.070658222 -0.032969525
[9,] 0.072534068 -0.160581542 0.006577853 0.183568634 0.134790458
[10,] -0.043770994 -0.074002509 -0.199079595 0.036967109 0.071912736
[11,] 0.127870572 -0.138243771 0.103167731 0.176322129 0.044751754
[12,] 0.105832554 -0.040878065 -0.086816445 0.038220317 -0.077038975
[13,] 0.179294997 -0.207385697 -0.103749520 0.033863939 -0.084784671
[14,] -0.529819581 0.070162827 -0.307188494 0.057524336 -0.082446819
[15,] 0.125905285 0.085982086 0.013164536 0.159670837 -0.184808072
[16,] 0.053060644 0.005975088 0.155502672 0.046662792 0.203062673
[17,] 0.176991929 0.113835961 -0.032571784 0.195103156 -0.097601918
[18,] -0.106374816 0.067451324 0.062083040 -0.100758259 -0.290523662
[19,] 0.338499323 0.197941205 0.143060977 -0.046817105 0.022158101
[20,] 0.121979299 -0.097650425 -0.228833000 0.008650852 0.204777437
[21,] -0.139447134 -0.013564983 0.013160832 -0.242048930 0.215330608
[22,] 0.267660218 -0.072902335 -0.171193028 0.177660811 0.183336672
[23,] 0.159061372 0.036625689 -0.129476338 0.066902922 -0.077137870
[24,] -0.001760595 -0.149350084 -0.165395951 0.079268775 -0.127497158
[25,] -0.101506547 0.132957416 -0.003244448 -0.409846775 -0.077441806
[26,] 0.041238846 -0.167653465 -0.287651030 -0.013824433 -0.131389342
[27,] 0.012913498 0.018952004 -0.049094191 -0.230797744 0.078360916
[28,] 0.215459561 -0.259797084 0.206417389 -0.330109002 -0.306608622
[29,] 0.021474757 -0.034663509 0.251998016 -0.097911377 -0.102434203
[30,] -0.111966020 -0.046733618 -0.006348328 0.296835870 -0.306842570
[31,] -0.125057428 -0.100691359 0.134749324 -0.049949966 0.187708449
[32,] -0.120308756 -0.218260472 -0.043708172 -0.133946110 0.102506222
[33,] 0.049378303 -0.035365911 -0.024571688 0.049369481 -0.004062730
[34,] -0.160559696 -0.155298421 0.083712835 0.087568979 0.016760536
[35,] -0.121709018 -0.108066329 -0.202750214 -0.197156269 -0.004401274
[36,] 0.266985321 0.424111202 -0.278967339 -0.246098196 0.127739333
[37,] 0.057620012 0.068837143 0.085662409 -0.001810040 -0.163490334
[38,] -0.035917404 -0.231057296 0.202006601 0.008825165 0.113581983
[39,] -0.175329611 0.005886550 -0.108221959 -0.006970761 0.045771796
[40,] -0.135862455 0.405241707 0.181725669 0.347622397 0.204562583
[,36] [,37] [,38] [,39] [,40]
[1,] 0.244326165 0.0501747541 -0.2315007970 0.17547431 0.078770995
[2,] -0.085172793 -0.0759354260 -0.1858912569 -0.11116683 -0.215113387
[3,] 0.068358919 0.0398635451 0.0260460921 0.02390101 0.178979276
[4,] 0.195618764 -0.0008855799 0.3197706794 -0.09261320 -0.006997310
[5,] 0.001502148 0.2576485944 -0.0212546037 0.05249582 -0.090096107
[6,] -0.038159226 0.0670506960 0.0140246217 -0.03845332 -0.045665900
[7,] -0.029133901 0.0497009518 -0.1920633907 -0.18738462 -0.088841123
[8,] -0.053461951 -0.0218726127 0.0461044923 0.12622211 -0.106671788
[9,] -0.043885140 0.0862392074 -0.0614831164 0.09778282 -0.020327619
[10,] -0.186209621 -0.0888611492 -0.0706582484 -0.01518650 -0.114230174
[11,] 0.120340393 0.3278214335 -0.1641696384 0.21115901 0.057664465
[12,] -0.229308135 -0.1979234421 -0.1168577444 0.27029655 -0.151943116
[13,] 0.144553818 0.1675228333 -0.1400509886 0.17850566 -0.154876675
[14,] 0.218005076 -0.1311067276 -0.2524749274 0.04521873 -0.044447817
[15,] -0.115393273 0.3053230377 -0.0969374632 -0.29192731 0.195652441
[16,] 0.063659508 -0.1636733999 0.0206192800 -0.12419974 0.175717931
[17,] 0.141229582 -0.0208500695 0.0345781766 -0.03327614 -0.025750113
[18,] 0.150466496 -0.0492700753 0.1441325754 0.02837943 0.241912548
[19,] -0.017377953 -0.0230954095 -0.0519550921 0.14972177 0.086935243
[20,] -0.051367020 0.0979172830 0.1714410958 0.08356675 -0.061367095
[21,] -0.091586177 0.2201593051 0.3064906796 0.21811964 0.131133911
[22,] 0.023719095 0.0177512129 -0.0228983328 -0.24364490 0.208023114
[23,] 0.183655595 0.2118349124 0.3173764676 -0.04431162 -0.087332055
[24,] 0.137963463 0.0264323982 0.3851340417 0.13456836 -0.077712060
[25,] -0.301414941 0.1852321285 0.1478868193 0.14162335 0.039431992
[26,] -0.272319726 -0.2741940562 0.0486628335 0.08115931 0.468360897
[27,] -0.129320753 0.0979887680 -0.1528028907 -0.27741106 0.003484819
[28,] -0.147749684 -0.1038570541 -0.0292333278 -0.01503290 -0.016058463
[29,] 0.197127324 -0.2683584658 0.0487320315 -0.06206444 -0.367092546
[30,] -0.089745164 0.0348900477 0.0139841398 0.04933249 -0.034584420
[31,] 0.217162094 -0.1668069152 0.1585038194 -0.23097806 0.138162324
[32,] 0.080284021 -0.0379183151 -0.1966031382 -0.05139139 0.048958139
[33,] -0.187418155 -0.0762541603 -0.0460621960 0.02493730 -0.099627545
[34,] -0.196632023 0.1957248038 0.1228955621 0.02848968 -0.368780317
[35,] 0.089749909 0.3050936576 0.0004155838 -0.42447525 -0.070759808
[36,] 0.203597809 -0.1878196348 0.0624564958 0.11330999 -0.133260770
[37,] -0.051601091 0.2322390049 -0.1856901054 0.11559402 0.090593822
[38,] -0.229945498 -0.1338359623 0.2083725429 -0.19506462 -0.111049767
[39,] 0.092251226 0.0630984759 -0.0212128281 0.23065965 0.195879030
[40,] -0.311167064 -0.0321359755 0.1218812603 -0.08324526 0.010208762
Attaching package: 'gridExtra'
The following object is masked from 'package:dplyr':
combine
Murder Assault UrbanPop Rape
Alabama 13.2 236 58 21.2
Alaska 10.0 263 48 44.5
Arizona 8.1 294 80 31.0
Arkansas 8.8 190 50 19.5
California 9.0 276 91 40.6
Colorado 7.9 204 78 38.7
Connecticut 3.3 110 77 11.1
Delaware 5.9 238 72 15.8
Florida 15.4 335 80 31.9
Georgia 17.4 211 60 25.8
scaled_df <- apply(USArrests, 2, scale)
arrests.cov <- cov(scaled_df)
arrests.eigen <- eigen(arrests.cov)
arrests.cov
Murder Assault UrbanPop Rape
Murder 1.00000000 0.8018733 0.06957262 0.5635788
Assault 0.80187331 1.0000000 0.25887170 0.6652412
UrbanPop 0.06957262 0.2588717 1.00000000 0.4113412
Rape 0.56357883 0.6652412 0.41134124 1.0000000
eigen() decomposition
$values
[1] 2.4802416 0.9897652 0.3565632 0.1734301
$vectors
[,1] [,2] [,3] [,4]
[1,] 0.5358995 0.4181809 -0.3412327 0.64922780
[2,] 0.5831836 0.1879856 -0.2681484 -0.74340748
[3,] 0.2781909 -0.8728062 -0.3780158 0.13387773
[4,] 0.5434321 -0.1673186 0.8177779 0.08902432
[1] 0.3569992
[1] 5.328079e-17
List of 2
$ values : num [1:4] 2.48 0.99 0.357 0.173
$ vectors: num [1:4, 1:4] 0.536 0.583 0.278 0.543 0.418 ...
- attr(*, "class")= chr "eigen"
eigen() decomposition
$values
[1] 2.4802416 0.9897652 0.3565632 0.1734301
$vectors
[,1] [,2] [,3] [,4]
[1,] 0.5358995 0.4181809 -0.3412327 0.64922780
[2,] 0.5831836 0.1879856 -0.2681484 -0.74340748
[3,] 0.2781909 -0.8728062 -0.3780158 0.13387773
[4,] 0.5434321 -0.1673186 0.8177779 0.08902432
[1] 2.4802416 0.9897652 0.3565632 0.1734301
[,1] [,2] [,3] [,4]
[1,] 0.5358995 0.4181809 -0.3412327 0.64922780
[2,] 0.5831836 0.1879856 -0.2681484 -0.74340748
[3,] 0.2781909 -0.8728062 -0.3780158 0.13387773
[4,] 0.5434321 -0.1673186 0.8177779 0.08902432
[,1] [,2]
[1,] 0.5358995 0.4181809
[2,] 0.5831836 0.1879856
[3,] 0.2781909 -0.8728062
[4,] 0.5434321 -0.1673186
beep <- prcomp(scaled_df)
beep$rotation <- beep$rotation * -1
beep$rotation <- beep$x * -1
biplot(beep, scale = 0)
To start
Social Skills
This is a bit less convincing, as the 8th item doesn’t consistently correlate with other items in this subscale.