Just Another Statistics Textbook
  • Report an error
  • Request a clarification
  • Suggest Content

Scientific Notation

  • Welcome
    • About
    • Installing R(Studio)
  • R Basics
    • Types of Scripts
    • R Fundamentals
    • R Logic
  • Statistics Foundations
    • Statistics Basics
    • Scientific Notation
    • Probability (R)
  • Describing Data
    • Central Tendency (R, Python, Excel, JASP)
    • Dispersion (R,Python, Excel, JASP)
  • Distributions
    • Binomial Distribution (R)
    • Normal Distribution
    • Skewness (R,Python)
    • Transforming Data (R)
  • Correlation
    • Correlations (R,Python)
    • Partial Correlations (R,Python)
  • Regressions
    • Simple regression (R)
    • Multiple Regressions (R)
  • General Linear Models
    • General Linear Models and Sum of Squares (R, Python)
    • T-Tests (R, Python incomplete)
    • One Way ANOVA (incomplete)
    • Repeated Measures ANOVAs
    • Mixed ANOVA (incomplete)
    • ANCOVA (incomplete)
  • Categorical
    • Contingency (R)
  • Item analyses
    • Cronbach’s Alpha (R,Python)
  • Multiple testing
    • Family-Wise Error (R)
    • False Discovery Rate(R)
    • FWER, FDR, Positive and Negative effects(R)
  • Permutations
    • Permutations (R)
    • Permutation vs. t tests (incomplete)
  • Excel tutorial
    • Formulas
    • If function
    • Count and countifs function
    • Sum and SumIf
    • Averageifs
    • Anchoring
  • Test yourself
    • All questions
    • Question Maker

Scientific Notation

Scientific notation is used to express very large or very small numbers in a concise format using exponents of 10 (\(10^n\)). So, rather than having to show all of the digits for \(4,600,000,000\) (4.6 Trillion) it can be expressed in scientific notation: \(4.6 \times 10^9\). Likewise, very small numbers can be expressed using the same format, e.g. \(0.0000005\) = \(5.0 \times 10^{-7}\).

Note: for numbers larger than one the exponent is positive (\(10^9\)) and for numbers less than one the exponent is negative (\(10^{-7}\))

e values are used to express scientific notation within R (and other programming languages) and essentially the \(\text{e}\) replaces the \(\times 10\) part of the notation.
For example, \(3.1\text{e}3\) is the same as \(3.1 \times 10^3\) (which is the same as 3100):

3.1e3 == 3.1 * 10^3
[1] TRUE

Likewise, \(2.5\text{e-}3\) is the same as \(2.5 \times 10^{-3}\) (which is the same as .0025):

2.5e-3 == 2.5 * 10^(-3)
[1] TRUE

However, if you would like to turn off scientific notation in R you can type:

options(scipen=999)

Question 1

Which is bigger?

viewof scientific_notation_1_response = Inputs.radio(['3.1e3','310']);
correct_scientific_notation_1 = '3.1e';
scientific_notation_1_result = {
  if(scientific_notation_1_response == correct_scientific_notation_1){
    return 'Correct!';
  } else {
    return 'Incorrect or incomplete.';
  };
}

Question 2

Which is bigger?

viewof scientific_notation_2_response = Inputs.radio(['2.5 * 10^-3',' .00025']);
correct_scientific_notation_2 = '2.5 * 10^-3';
scientific_notation_2_result = {
  if(scientific_notation_2_response == correct_scientific_notation_2){
    return 'Correct!';
  } else {
    return 'Incorrect or incomplete.';
  };
}